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A resonant method for the determination of the dynamic properties of solid polymers is presented. A 
composite oscillator driven by a piezoelectric crystal, in longitudinal oscillations and at a frequency of the 
order of 50 kHz, is employed. The changes in the storage and loss moduli, the loss tangent and the 
attenuation coefficient for the material, as a function of temperature, can be obtained from the changes in 
the resonant frequency, the width of the resonance peak and the transference function of the composite 
oscillator. Finally, some data obtained in specimens of vulcanized rubber are presented, to illustrate the 
applicability of the method. 
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I N T R O D U C T I O N  

The literature describes several methods for the measure- 
ment of the dynamic properties of solid polymers1, which 
differ according to the frequencies employed. A torsion 
pendulum working either in free or forced vibrations is 
normally used at low frequencies ( ~ 1 Hz);  for frequencies 
up to 103 Hz, free vibrations z, non-resonant forced 
vibrations 3-6 and resonant forced vibration methods 7'8 
are employed. At higher frequencies, above 104 Hz, a 
method of propagation of continuous waves has been 
used 9A°, where a piezoelectric crystal was employed as 
a driver to vibrate a polymeric material. Methods that 
propagate pulses in polymeric materials, at frequencies 
above 105 Hz 11'~z are also found in the literature. Ivey 
et al. 13, for example, have estimated tan ~ and the glass 
transition temperature (T~) in GR-S, butyl and Hevea 
rubbers by using a device that propagates pressure waves 
in the material. Finally, in a more recent work, Jang and 
Z h u  14 have obtained dynamic properties and Tg through 
the technique of mechanical impedance analysis. 

It is the pupose of this paper to present a resonant 
technique for the measurement of the dynamic properties 
of polymeric materials, at high frequencies, by using a 
resonant method based on the principle of the composite 
oscillator developed by Quimby 15 and Read 16. This 
device has been used in metals a7 but, to our knowledge, 
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has not been employed to study the dynamic behaviour 
of polymeric solids, where special features appear due to 
the high damping presented by these materials. Conse- 
quently, the mechanical and electrical response of the 
composite oscillator will be studied in detail, to show 
how the dynamic behaviour of the material can be 
extracted from the measured response of the composite 
oscillator. Finally, some results obtained in specimens of 
vulcanized natural rubber will be presented, to illustrate 
the procedure and to show that reliable parameters are 
obtained for the material. 

THEORY 

The principle of the measuring device is based on the 
composite oscillator, shown in Figure 1. The composite 
oscillator involves the excitation of specimens by a 
piezoelectric crystal which is cut to resonate at a specific 
frequency, typically in the range 2 0 -2 0 0 kHz  for 
longitudinal vibration. The specimen is joined to the 
crystal with an appropriate bonding agent and it is cut 
with a length equal to a half wavelength at the specified 
resonant frequency (of the order of 50 kHz in our case). 
It is possible to apply to the composite oscillator the 
theory of longitudinal vibrations in a viscous medium 16. 
The movement of each component of the system can be 
described by15: 

dZu dZu 4 d3u 
= E' + (1 + , , ) , 7  (1) 

P ~ d x  2 3 dx 2 dt 

where p is the density of the material, u is the 
displacement, E' is the storage modulus, cr is Poisson's 
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Figure 1 Schematic diagram of the composite oscillator : FS, frequency synthesizer; FC, frequency counter; VTVM, vacuum tube voltmeter ; RL, 
loading resistance 

ratio, r/ is the viscosity, t is time and x is the variable 
associated with the displacement in the direction of 
propagation. The following boundary conditions apply: 
( 1 ) there exists a physical displacement node at the centre 
of the piezoelectric crystal ; (2) the condition of resonance 
in both components implies displacement maxima at 
both ends of the composite. 

These two boundary conditions lead to a solution for 
equation (1) of the form 

u s = 2A~ exp(io9t) sinh[(~s + ik~)x] (2) 

where A s is the maximum displacement, o9 = 2nf  with f 
the applied frequency, ~s is the acoustic attenuation 
coefficient which is proportional to q and ks = og/vs where 
vs is the phase velocity. The subscript s refers to the 
specimen. A similar equation would be obtained for the 
mechanical response of the crystal. 

Substituting equation (2) into equation (1) leads to 

( 1  - -  r 2) 
E' s = (2Lj~)2ps (1 + r ~ 2  (3) 

with 

r = cq2~12n (4) 

and 

k s = 2n/2s (5) 

where Ls is the length of the specimen at resonance 
(2Ls = 2s) and 2s is the wavelength. If r 2 << 1, equation 
(3) reduces to the known expression: 

E; = v2ps = (2LJ~)2ps (6) 

Then, if the temperature dependence of f~ is known, 
equations (3) and (6) give the temperature dependence 
of E'~. Finally, it can be shown that E' s and tan 6~ are 
related by : 

2f~L~= (E'Jps)X/2(1 tan28 6~) (7) 

In the case where the attenuation coefficient or the 
specimen are small, so that exp(cqx)~- 1, equation (1) 
can be rewritten as 

d 2 e  q ,  de 
m ~ 5 +  dt + E'se = 0 (8) 

where m is the mass, e -- du/dx is the longitudinal strain 
and r/' =~ (1  + a)q. It should be pointed out that 
equation (8) is analogous to the differential equation that 
describes the behaviour of the polymer through a Voigt 
model, including inertial effects 18. The viscoelastic 
behaviour of the material, however, is generally not 
described by a single Voigt element but by several 
elements connected in series, relaxing independently. 

The electrical equivalent of a piezoelectric crystal is a 
series RLC circuit 19, which is valid also for a small 
polymeric specimen since on identifying the inductance 
L with the mass, the resistance R with ~/' and the current 
I with e, the equation for Voigt's model, equation (8), 
converts to the differential equation for a series RLC 
circuit. Then, if the polymer is represented by several 
elements connected in series, the electrical equivalent will 
be a set of series RLC circuits, which will be equivalent 
to a unique RLC circuit where L = ~ L i ,  R = ~iRi 
and 1/C = ~i I/C~. 

In summary, the electrical equivalent of the composite 
oscillator of Figure 1 is the electrical circuit shown in 
Figure 2, where the subscripts c and s refer to the crystal 
and the specimen, respectively. The capacities Co and Cp 
represent the influence of the mounting device on the 
crystal and the connecting leads, respectively. Moreover, 
ZL represents the impedance of the measuring system 
and Vi and Vo are the input and output voltages, 
respectively. 

The measured transference function, that is, the ratio 
Vo/Vi, is given by: 

Z (  1 o.)2C2) 1/2 (9) Vo/Vi~ L ~ 3V 
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Figure 2 Equivalent electrical circuit for the composite oscillator in 
Figure 1. V i and V o represent the input and output voltages, respectively, 
Z is the impedance of the composite, and Co and Cp represent the 
capacitances of the mounting device for the crystal and the connecting 
leads, respectively 

where Z is the impedance of the composite oscillator and 

C t : C O + C p  ( 1 0 )  

Finally, on taking into account the electrical equivalent 
of the composite oscillator it can be shown that at 
resonance2° : 

mt f t tan f ,=ms f+tan f s  +mcfc tan fc  (11) 

and 

mtf2t = msfZ~ + m~f 2 (12) 

EXPERIMENTAL 

The composite oscillator was located in a vacuum 
chamber which allowed measurements in vacuum or inert 
atmosphere 21. The vacuum chamber was immersed in a 
Dewar that contained the refrigerating medium (liquid 
nitrogen or dry ice and alcohol). The temperature of the 
composite was easily changed by a small electric furnace 
located in the vacuum chamber. The temperature was 
sensed with two thermocouples near the ends of the 
specimen and stabilized within ___ 1 K. Argon transfer gas 
was added to the system from a valve placed between 
the mechanical pump and the vacuum chamber. 

The resonant frequency and the damping of the crystal 
were measured, as a function of temperature, before 
attaching the specimen. Once tan 6c and fc are known, 
fs and tan 3+ can be determined from the measured ft 
and tan ft values, by using equations (11 ) and (12). The 
output of the system, for a given input voltage from the 
oscillator, is sensed with a vacuum tube voltmeter 
through the loading resistance R L (Figure 1). The 
resonant frequency of the composite, ft, is the frequency 
that gives maximum output on R L at each temperature 
and tan ft is given by'  

tan f, = Af/f,  ( 13 ) 

where Af is the difference between frequencies at - 3  dB 
from the output of the system at resonance. 

The specimens were prepared from natural rubber with 
65 parts of carbon black and 5 parts of sulphur, per 
hundred parts of rubber, and vulcanized at 428 K up to 
different curing levels (80, 100 and 140% ). The lengths 
of the specimens were adjusted, at room temperature, in 
such a way that the resonant frequency of the composite 
did not differ > 10% from the resonant frequency of the 
crystal. 

Measurements of the transference function and tan fit 
were performed at room temperature and the resonant 
frequency of the composite was measured on heating, 

between 193 K and 323 K, in steps of 5 K. Finally, all 
measurements were made at very low strain amplitudes 
(of the order of 10-v). 

RESULTS 

Figure 3 shows the variation of the resonant frequency of 
the composite with temperature, for the rubber specimen 
cured up to 140%. An abrupt change of frequency is 
observed near 240 K and since the frequency of the crystal 
does not show important changes in the temperature 
region covered by Figure 3, the temperature dependence 
of f t  reflects mainly the changes produced in the 
mechanical response of the elastomer. As will be shown 
later, the attenuation coefficient for the material is of the 
order of 0.63, so that r 2 = 0.04 << 1 and Young's storage 
modulus is given by equation (6). Then, equations (6) 
and (12) can be used to determine E' s from the measured 
ft against temperature curve. The storage modulus 
against temperature data obtained in this way are shown 
in Figure 4 (subscript s has been omitted). Here also a 
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Figure 3 Resonant frequency against temperature for the composite 
with a specimen of vulcanized rubber cured up to 140% 
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Figure 4 Young's storage modulus against temperature for the 
vulcanized rubber specimen cured up to 140% 
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Figure $ Transference function against frequency (solid curve), at 298 K, for the rubber 
specimen cured up to 140%. The broken line represents the contributions of C o and Cp from 
Figure 2 

large drop in the modulus is observed near 240 K. If an 
attempt is made to measure tan 6 t by using equation ( 13 ), 
to extract tan 6~ by using equation (11), problems are 
encountered due to the high damping presented by the 
elastomers at room temperature. In fact, a high 
background signal was present in the output voltage and, 
consequently, the transference function of the composite 
was measured, to extract tan ~,. The typical form for 
the transference function of the composite, at room 
temperature, is shown in Figure 5, which corresponds to 
the specimen cured up to 140%. A maximum is obtained 
at the resonant frequency but Vo/V i does not go to zero 
at the antiresonant frequency. This is due to the fact that 
there are two contributions to the total transference 
function : the contribution due to the composite oscillator 
plus the transference function of the capacities Co and 
Cp, shown in Figure 2. In fact, equation (9) can be written 
a s  : 

Vo/V i -~- Z L ~ + ¢oC t -- 2(ogCt/Z ) (14) 

and, on assuming that 

(2coCt/Z)<<(1Z 

equation (14) reduces to 

2 

+ o~C, (15) 

z(, ) Vo/Vi = L ~ + o~C, (16) 

which means that at resonance (Z = Rc + Rs) 

Vo 
Z L / ( R  c + Rs) ~ - -  - -  Z L ( D C  t (17) 

Vi 
where Z L O ) C  t is the transference produced by the 
capacitors in parallel with the composite oscillator. This 
transference can be obtained far from resonance since 
Z ~ oo and equation (16) simplifies to: 

V o / V  i = Z r ( o C  t ( 1 8 )  

at frequencies higher than the resonant frequency. Since 
Z e = RL, equation (18) shows that the contribution to 
the total transference function due to Ct changes linearly 
with the frequency, as indicated by the broken line in 
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Figure 6 Net transference functions for the composite, at 298 K, for 
the three specimens: (©) 80% curring; (O) 140% curing; (A) 100% 
curing 

Figure 5. Then, on subtracting this contribution, it is 
possible to obtain the transference function of the 
composite oscillator. This is illustrated by the curves 
shown in Figure 6, where the net transference functions 
of the composite, at room temperature, for the three 
specimens, are indicated. 

It should be pointed out that the term ZecoCt, which 
for the case of elastomers is comparable to the 
contribution of the composite, is determined by the 
experimental set-up and is independent of the specimens 
studied. This value is known and does not differ much 
with the equipment used. Cp can be kept always below 
5 pF and for the quartz crystals used R c = 103~ and 
Co < 5 pF. Furthermore, for the equipment used: 
C o = 3.3 pF, Cp = 4.7 pF and R s = 166 ffL indicating that 
equation (15) is satisfied. 

Once the transference function of the composite is 
known, tan 6 t can be obtained from the transference 
functions shown in Figure 6 by using equation (13). 
Moreover, equations (6), (11) and (12) and the 
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Table 1 Dynamic moduli and loss tangent, at 298 K, obtained in the vulcanized rubber specimens with different curing levels 

Curing L~ m~ f~ E', E~' tan fit 
( % ) (cm) (g) (kHz) (GPa) (GPa) tan 5~ tan 5~ (elec.) 

80 1.10 0.240 46 725 1.02 0.15 0.15 0.10 0.096 
100 1.45 0.348 46 349 2.10 0.35 0.17 0.16 0.146 
140 1.20 0.288 45847 1.42 0.21 0.15 0.12 0.117 

relationship : 

tan6~ = E~'/E's (19) 9s 

where E~' is the loss modulus, allow a calculation of the 
other parameters for the specimen. The results obtained 
through this procedure are shown in Table 1. The 
composite oscillator can also be used to obtain the as 
attenuation coefficient for the material. In fact, the factor ¢r 
of merit, Qt, of the composite is defined by : 

Qt = 2/twist/W~diss = 27t(W~ ¢, + W~,)/(Wg~s + Wc~iss) 7,5 

= tan 6 t (20) 

where W~t and Wai~s indicate the stored and dissipated 
energy per cycle, respectively, The superscripts c and s 
indicate the corresponding quantities in each component  6s 
of the composite. On calculating the corresponding 
energies for each component,  taking into account that 
displacement maxima are present at the extremes of each 
of them, and that the viscosity of the crystal is very low, 
that is, E~' = 0, equation (20) can be written as '  

t 

--~_ . . . .  2 i t t  Q, E, + 2re E~/~,E,L~[2 + (k,/~,) z] 
E'/, 

× [1 + e x p ( - 2 ~ , L , ) ]  (21) 

where Lc is the length of the crystal. Then, ~s can be 
obtained by fitting equation (21) to the experimental 
data, which is a complicated procedure. If the specimen 
is large, however, in such a way that the term exp(~,x) 
in equation (2) is higher than one it means that above 
a given length of specimen, L,e, the elastic waves are 
completely attenuated and, consequently, there are no 
more changes in the loss of the composite, leading to a 
constant tan 5t for Ls > Lsf .  This effect is illustrated in 
Figure 7 for the specimen cured 80%, measured at room 
temperature. This curve was obtained by the following 
procedure. A specimen with a length equal to several half 
wavelengths was joined to the piezoelectric crystal. The 
transference function was measured and tan6,  was 
obtained by using equation (13); ( tan6t)  -1 gives Qt 
directly. The specimen was shortened by segments of a 
half wavelength in successive steps and the transference 
function and tan 6 t were measured at each step, until the 
specimen had a length equal to one half wavelength. The 
measurements are indicated by the solid circles in Figure 
7. It can be noticed that for L, > 3 cm, Qt remains 
constant within experimental error. This procedure was 
used due to the fact that the composite system operates 
only in resonance. From Figure 7 it can be concluded 
that:  (1) the reciprocal of ~ has a maximum value of 
three times the length needed for the fundamental 
resonance, that is, 

(k~/~) ~- 37r 

and (2) 2c~L¢pc/ps>> 1, where pC = 2 . 2 8 g e m  -3 and 
Ps = 1.17g cm-3 .  On taking into account these two 

Figure 7 Quality factor against specimen length, at 298 K, for a rubber 
specimen cured up to 80% 

approximations,  equation (21) can be written as : 

Qt = (E',/E~')2~,Lc(p¢/Ps)[I - e x p ( - Z ~ , L s ) ]  -a (22) 

This equation cannot be fitted directly to the experimental 
data since E'ss/E ~' is not known. The fitting can be 
performed, however, by considering the asymptotic value 
of equation (22), that is, the value of Qt when Ls ~ ~ ,  
given by : 

Qtf = (E'~/E~')2~L¢(p¢/ps) = 68 (23) 

Then, combining equations (22) and (23) leads to:  

ln[1 - (Qtr/Qt)] = - 2 ~ L ~  (24) 

The fitting of the experimental data of Figure 7 to this 
equation gives 

~, = 0.63 (25) 

with a correlation coefficient of 0.9991. The curve 
described by equation (24) is indicated by the curve in 
Figure 7. 

Once ~s is known, E' s can be calculated by using 
equation (3) and tan 5~ by using equation (23), leading to 

E', = 1.02 G P a  tan 6 S = 0.19 (26) 

The value of E'~ coincides exactly with the value given in 
Table 1 for the same material, as expected, since r 2 << 1. 
Tan 5, does not differ much from the value reported in 
Table 1, on taking into account the experimental errors 
and the approximations made. Finally, tan fit can also 
be obtained from the electrical analogue of the composite 
oscillator, shown in Figure 2. In fact 21 

tan 5t = o.)tRtCcs (27) 

with Rt = R~ + R~ and C~s = C,C¢/(Cc + Cs). In addition, 
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C ,  - Co, ogt is measured directly and R t is obtained from 
the relationship : 

R t = (V~ - Vo) / { (Vo /RL)  2 - [(V~ - go)o,)tCt]2} 112 (28) 

The values calculated for tan 6t by using equations (27) 
and (28) are indicated by tan 6t(elec.) in Table 1. It is seen 
that good agreement is obtained with the values calculated 
from the transference function. 

DISCUSSION 

The values of E' and E" given in Table I are similar to those 
obtained by applying the time-temperature superposition 
to the data measured at low frequencies in vulcanized 
rubber 22 and the values C1 and C2, for the Williams- 
Landel-Ferry equation, reported on page 277 in reference 
1. It should be pointed out, however, that non-linear effects 
have been observed in the dynamic mechanical behaviour 
of elastomers 23, that is, the dynamic moduli and the loss 
tangent are amplitude-dependent, reaching a plateau at low 
strain amplitudes. Consequently, a direct comparison of 
the data reported in Table I with those given in the literature 
should be performed, in principle, only for experiments 
carried out at very low strains. Arai and Ferry 24'25, in fact, 
reported G', G" and tan 6 data for carbon black filled 
styrene-butadiene rubbers, both in cured and uncured 
specimens. The experiments were performed with a torsion 
pendulum ( ,-, 1 Hz) operating at very low strain amplitudes. 
The following values are obtained, at 50 kHz, from the 
master curves reported for 298 K in cured specimens: 

this procedure might be slightly lower than the one 
obtained with the traditional methods of propagation of 
continuous waves or pulses, the experimental require- 
ments are much simpler in the case of the composite 
oscillator. 

CONCLUSIONS 

A composite oscillator driven by a piezoelectric crystal, 
working in longitudinal oscillation and at a frequency of 
50kHz,  has been presented. The mechanical and 
electrical response of the composite oscillator, which 
involves the specimen and the piezoelectric crystal, have 
been studied in detail, to show how the dynamic 
mechanical properties of the specimen can be obtained 
from the measured mechanical and electrical response of 
the composite. Finally, some measurements on vulcanized 
rubber specimens have been reported to illustrate the 
applicability and reliability of the device. 
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G' = 2.0 GPa  G" = 0.25 GPa  tan 6 = 0.20 

These values are of the order of those shown in Table 1 
for E's, El' and tan 6s. It should be mentioned, in any case, 
that these are only order of magnitude estimates since 
the t ime-temperature superposition is not strictly 
valid 26. 

E' varies with curing as expected since as vulcanization 
advances from 80 to 100% more sulphur links are formed 
and the storage modulus increases. Between 100 and 
140% the process reverses and some sulphur links are 
destroyed inducing a decrease in the modulus, which is 
the trend 27 observed in Table 1 for E'~. In principle, the 
composite oscillator can be used to simply determine 
the loss tangent and the resonant frequency of the 
specimen by using equations (10) and (11). This is not 
the case, however, for hard polymeric solids and metals 
where the damping is very low. In fact, in materials with 
high damping, that is, with high R~, the transference of 
the composite oscillator is of the order of the transference 
due to C t (Figure 2). If R~ is small, on the contrary, 
1 / Z  >> ogCt equation (9) reduces to V o / V  i "~ Z L / Z  and 
the measured transference function depends only on the 
impedance of the composite, since Z L = R L is fixed. It 
has been shown, however, how the composite oscillator 
can be used to obtain the loss tangent of the specimen 
also for high damping materials. 

Finally, the composite oscillator can also be used to 
measure the attenuation coefficient of the specimen by 
using the method leading to Fioure 7, provided the 
attenuation is sufficiently high. Even if the accuracy of 
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